
  

 1 

C2SIM Server Reference Implementation Documentation– Version 4.8.2.3  
 

User Instructions 
Recent additions highlighted. 

 
Overview 
 
GMU C4I and Cyber center is making available C2SIM Server release 4.8.2.3 and C2SIM Client 
release 4.8.0.5  as the current version of the C2SIM Reference Implementation. Note that the 
Server and Client release numbers are now the same, though the last digit may not match if 
changes to one do not require changes to the other. These packages support the following: 
 

• C2SIM orders and position reports for C2SIM Version 1.0 the version that was submitted 
to SISO for standardization, augmented for CWIX 2022 as C2SIM_CWIX2022v1.2 

• Legacy protocols C2SIM Version 0.0.9 for Initialization, Orders and Position Reports, 
MSDL for initialization, and IBML09, and CBML-Light for orders and position reports 

• Translation of basic data among all four dialects for orders and reports 
• Processing and marshalling of C2SIM initialization messages. 
• Translation between C2SIM initialization messages and MSDL 
• Operator commands and session state messages 
• Emulated Cyber attacks  
• Collection of response time statistics by the server 
• Verification that the version numbers of the client meets the minimum required for a 

particular version of the server. 
• Recording and playback of server input, under control of the C2SIMGUIv2.11.4 
• Support for the new C2SIM SystemCommand messages in C2SIM_CWIX2022v1.2. 

 
The C2SIM formats used by the current version of the server are in compliance with C2SIM 
Standard ontology and schema draft Version 1.0 and schema C2SIM_CWIX2022v1.2. 
 
Server Configuration 
 
The server(s) usually run as a VM using the following components 

• Linux Centos 7 
• Java Version 8 
• JDOM 2.0.6 
• Apache Tomcat 8.0.30 Web Services (RESTful Web Services) 
• Apache Apollo 1.7.1 Messaging (STOMP Messaging Server) 

 
The server comes packaged in a .war (Web Application Archive) file, including code and 
documentation and all needed pieces to run in this environment.  
 



  

 2 

The basic server configuration is shown below. Note that a single input message may be sent to 
several destinations. Also, that the same client may submit REST messages and receive STOMP 
messages. 
 
 

 
 

Figure 1: Server Operation 
 

Basic Message Processing 
 
Sending – Messages are sent to the server using RESTful Web Services protocols via the 
C2SIMClientREST_Lib class in the C2SIM_Client Library. Based on information obtained from the 
XML schema, the server characterizes the message determining the type of message and the 
BML/C2SIM version (also known as dialect) used. Messages are translated to the other three 
dialects, if that feature is turned on in the server. The message is then sent to the STOMP server 
where it is published to all subscribers. The server adds a number of STOMP headers to the 
outgoing message so that filtering may be done by the STOMP server or by receiving system.   
 
In a REST transaction the client will disconnect after the message is sent and a response from 
the server has been received.  Submitting a message consists of the following: 
 

• Instantiating a C2SIMClientREST_Lib object 
• Setting parameters 
• Sending the request 
• Receiving the result 
• Destroying the C2SIMClientREST_Lib object 

 
Under control of a switch in the C2SIMServer.properties file, the server may request that the 
response time for the transaction be sent by the client to the server as a separate transaction 
for use in testing server performance. This is completely handled by the C2SIM Server and the 
C2SIMClientREST_Lib class of the C2SIM client library; the client application is not required to 
participate. The server records the response time in the C2SIM Debug log. 
 



  

 3 

When a message is sent to the server, a message number is generated. This message number is 
returned in the response, echoed back by the client library with response time statistics, and 
added to the STOMP message as one of the headers. This enables tracking of all messages from 
end to end. 
 
Receiving – Messages sent to the C2SIM server are sent to all systems that have subscribed to 
the STOMP server. Message receipt is via the C2SIMClientSTOMP_Lib class of the C2SIM_Client 
Library.  Most client systems are both senders and receivers. Receiving systems establish a 
STOMP subscription, using TCP, via the C2SIM_Client library. The TCP connection is kept open 
as long as the client holds a STOMP connection; multiple messages will be received over this 
subscription. Both blocking and non-blocking calls to receive the next message are supported 
by the library. Receiving consists of the following: 
 

• Instantiating a STOMPClientSTOMP_lib object 
• Set parameters (Topic should normally be /topic/C2SIM) 
• Specifying optional subscription(s) 

Example:   c. addAdvSubscription(“ protocol = ‘C2SIM’ ”);  
• Connecting by executing the connect() method of C2SIMClientSTOMP_lib. 
• Loop and receive messages c.getNextBlock() or c.getNextNoBlock() indefinitely 
• Connection stays open until c.disconnect() is called 

 
STOMP messages include a variable number of header parameters, much like HTTP messages. 
These may be used for filtering after the message has been received by the STOMP server 
ensuring that only messages of interest are processed. In addition, the connect request may 
carry a subscribe string (Much like an SQL statement) that will cause filtering to be done by the 
server, delivering only messages on that connection that satisfy the subscribe string. 
 



  

 4 

Headers (underlined) that may be used for filtering include the following: 
 
 protocol (BML or SISO-STD-C2SIM) 
 
 submitter - Identifier used when the message was sent to the server 
 
 message-selector  Indicates the type of message.  Possible message selectors are: 
  MSDL 
  IBML09_Report 
  IBML09_Order 
  CBML_Order 
  C2SIM_Order 
 
 message-type – Indicates general type of message 
  Order 
  UNIT (Position or General Status Report) 
  
 message-dialect – Specific BML version used 
 

IBML09  
CBML 
C2SIM 

 
The server can translate among all four dialects. Which translations are performed is 
controlled by server startup options. 

 
 C2SIM Message Parameters 

sender 
receiver 
communicativeActTypeCode 
conversationid 

  
 
Other Server Functions  
 
Translation - Messages can be translated among four protocols: 
 

• C2SIMv0.0.9 
• C2SIMv1.0.0 
• IBML09 
• CBML-Light 

 
This includes orders and Position/General Status reports.   
 



  

 5 

Initialization data can be translated between: 
 

• C2SIMv0.0.9 
• C2SIMv1.0.0 
• MSDL 

  
Initialization – Exercise initialization in the past has been done using MSDL. C2SIM is intended 
to combine the functions of CBML and MSDL. Before the simulation exercise starts initialization 
will be performed by processing C2SIM ObjectInitializationBody or C2SIMInitializationBody 
transactions that define the characteristics and initial positions of Units and other items.  
Multiple sets of these transactions may be submitted by different sources.  An alternative 
method for entering initialization information is to position a file on the server containing the 
same information as is submitted in ObjectInitialization transactions and then executing a LOAD 
command.   
 
When the server receives a SHARE command, the accumulated set of definitions in 
C2SIMInitializationBody format will be published to all participants and the simulation will be 
started. Additionally, the accumulated C2SIM initialization information will be translated to 
MSDL and published. No additional initialization transactions will be accepted after the 
execution of a SHARE command. A START command starts the scenario and at this point the 
server is prepared to accept orders and reports. When clients receive a C2SIMInitializationBody 
message it will contain all units and other items that have been provided through initialization. 
 
C2SIM Initialization messages (as passed to the C2SIMClientLib) like all C2SIM messages will 
start with <MessageBody>.  The C2SIM Server will process Initialization information  contained 
within <C2SIMInitializationBody>, <ObjectInitializationBody>, or <ObjectInitialization> (Version 
0.0.9). 
 
Unit Status Tracking – The initialization database establishes the initial position and other 
properties of the units in the simulation. After that, the server will maintain the last position 
received via position report for each unit. A query has been implemented to access this data. 
QUERYINIT will return the initialization data distributed at the beginning of the exercise, in 
C2SIMInitializationBody format with updated positions. It also will return the same data in 
MSDL format. This response can support late joining of clients after an exercise has been 
started by SHARE and RUN. 
 
C2SIM Message Envelope Support – The new C2SIM standard specifies an XML message header 
separate from the actual data. This header contains a number of fields used to identify the 
sender, specific receivers, command indicating the type of message 
(CommunicativeActTypeCode), unique identification for this specific message (MessageID) and 
for a series of messages (ConversationID). 
 
The C2SIM Client Library does most of the processing of the C2SIM message header, including 
header creation, stripping off the header before delivering the original message, and sending a 



  

 6 

response where required and other functions. See the C2SIM_ClientLib Javadoc file for more 
information. 
  
Header Creation – When a C2SIMClientREST_Lib object is created with a parameter list that 
includes sender, receiver, performative, and protocol version indicating that the transaction is 
to be encapsulated In a C2SIM message, the Client Library creates the C2SIM header in 
preparation for sending the message. The C2SIM standard doesn’t describe the format of the 
Sender and Receiver fields. A coalition planning on using C2SIM should establish a plan so that 
all Sender and Receiver entities have unique names. The messageID and conversationID are 
created as new UUIDs. These can be accessed and/or changed before the message is 
transmitted. 
 
Header Access - A getC2SIMHeader() method in the  C2SIMClientREST_Lib object will return a 
reference to the C2SIMHeader, which then may be queried and/or modified before the actual 
message is sent. On receipt of a message the C2SIMClientSTOMP_Lib class returns a 
C2SIMSTOMPMessage object. This object also supports a getC2SIMHeader() method which 
returns the C2SIM header of the message that was just received. 
 
Recording and Playback of the C2SIM Message Stream 
 
Previous version of the server provided for logging of output messages to directory 
c2simReplay. A Player module (also present in the C2SIMGUI) re-sends messages from the 
logfile so all connected clients. A control panel for this capability has been included in the 
C2SIMGUI.  
 
Interfacing without the use of the Client Library 
 
There are two client libraries provided by this project, Java and C++.  The Java library consists of 
a single jar file and was built on Java 1.8.0_65 and NetBeans 8.2.  The C2SIM Server 
components do conform to industry standards and may be used without the supplied client 
libraries although this is not recommended. The library routines are straightforward to use, are 
provided with source code, and are well documented. 
 
The C2SIM server is implemented using REST procedures.  The following URLs are used to 
access the server: 
 
URL: http://hostname:8080/C2SIMServer/c2sim Submission of BML and C2SIM documents 
 
REST Parameters: 
 protocol    C2SIM or BML 
 submitterID    Identification of the submitter 
 sender     Identifier of sending process (C2SIM Only) 
 receiver    Identifier of intended recipient (C2SIM Only) 
 communicativeActTypeCode   Type of communication (C2SIM Only) 



  

 7 

 conversationID   Identity of a series of messages 
 version     Version of client software – Currently 4.6.3 
 
URL: http://hostname:8080/C2SIMServer/command Submission of session commands 
 
REST Parameters: 
 command  Command as described later in this document 
 parm1, parm2  Parameters used with above command 
 submitter  Identification of the submitter 

version   Version of client software – Currently 4.6.3 
 
The STOMP server is an off-the-shelf copy of Apache Apollo 1.7.1 and implements standard 
STOMP version 1.2. 
  
C2SIM Client Library 
 
The ClientLib is available in both Java and C++. The details of the Java C2SIM Client Library are 
contained in the JavaDoc file which accompanies this document. The C++ version provides 
equivalent implementations of all Java methods. Appendix A below gives sample code using the 
Java ClientLib. 
 
C2SIM Client Utilities 
 
In the following, xxx indicates the version number of the program being described. 
 
Several standalone utilities are provided primarily as examples of how to program the C2SIM 
Client library. Most of their functions also are available under a user-friendly interface in the 
open source C2SIMGUI, available at https://OpenC2SIM.github.io. 
 
The use of these utilities is documented below. The “_ALL” suffix is in indication that all 
dependencies are included in the jar file and the jar file is executable as is. Note that the source 
code is also included in the jar file. The source code may be obtained by completely unzipping 
the jar file as follows: 
 
 jar  -xvf  C2SIM_WSClient2-xxx_ALL.jar protocol  version 
 
C2SIM_WSClient2-4.8.0.x_All – Submit an xml document to the C2SIM server via RESTtul Web 
Services.  
 
java -jar C2SIM_WSClient2-xxx_ALL.jar  hostname   xml_file  submitterID protocol 
 hostname  Name or IP address of the C2SIM Server 
 xml_file  File containing the xml data to be submitted 
 submitterID Name or initials identifying the submitter. 



  

 8 

 protocol BML or SISO-STD-C2SIM or Cyber 
 version  C2SIM Protocol version (0.0.9 or 1.0.0) 
 
If the protocol is SISO-STD-C2SIM , a C2SIM header will be generated using “ALL” for sender and 
receiver and “Inform” for the C2SIM performative. An experimental module has been added to 
emulate Cyber attacks has been added to the server and to the WS Client. This capability 
attacks incoming messages according to parameters in a control file. This control file is 
submitted to the server using the WSClient specifying “Cyber” as the protocol.  The full 
capability is described in a separate document. 
 
C2SIM_StompClient2-4.8.0.x_ALL – Connect to a STOMP server, receive all published messages 
and print them via System.out.println() 
 
java -jar C2SIM_StompClient2-xxx_ALL hostname 

hostname Name or IP address of the STOMP server. 
 

 
C2SIM Commands – A number of commands are used to submit initialization data, manipulate 
the database of Units and to control the simulation. The diagram below shows the server states 
(Ovals), Transitions (Arrows) and allowed C2SIM/BML Transactions (Horizontal arrows).  
Commands are in all caps, C2SIM XML initialization messages in boxes in bold and System 
Command messages showing status and sent to all systems are in boxes (non bold) 
 
 
 
 

   
UNINITIALIZED 

INITIALIZING 

INITIALIZED 

RUNNING 

PAUSED 

SubmitInitialization 

InitializationComplete 

INITIALIZE 

C2SIMInitializationBody 

ObjectInitialization 

SHARE 

START 

PAUSE 
START 

RESET 

Orders and Reports 

StartScenario STOP 

RESET 

ResetScenario 

ResetScenario 
ShareScenario 

StopScenario 

StartScenario 
PauseScenario 



  

 9 

 
 

C2SIM Server Commands 
 

Command Parm1 Parm2 Required Simulation State Actions 
 

Unit Database Manipulation Commands 
 

LOAD filename  UNINITIALIZED Load contents of named file process 
the initialization data found there as 
if received over network.. 
 

 
Simulation State Commands 

Initial state when server starts is UNINITIALIZED 
 

RESET Password  INITIALIZING Reset database and state back to 
“UNINITIALIZED”.   
Delete initialization data.  
Reset emulated Cyber attacks 
 

SHARE Password  INITIALIZING Publish existing database 
Terminate initialization phase 
Format is 
C2SIM_MilitaryOrganization 
Set simulation state to “INITIALIZED" 
Save Unit DB for late joiners 
 

START Password  INITIALIZED 
Or PAUSED 

Start simulation 
Set simulation state to “RUNNING” 
 

STOP Password  RUNNING Stop simulation 
Don’t delete initialization data. 
Set simulation state to “INITIALIZED” 
 

PAUSE Password  RUNNING Pause the simulation. 
Set simulation state to “PAUSED” 

STATUS   ANY Return state of server using the 
same format returned to submitters 
of XML documents. 

  



  

 10 

Command Parm1 Parm2 Required 
Simulation State 

Actions 

 
Initialization Information Query Commands 

 
QUERYINIT   INITIALIZED or 

RUNNING 
Return all initialization data as originally 
specified for initialization in 
C2SIMInitializationBody format.  Also 
translate to MSDL and return that as well. 

RESTful POST of 
C2SIM_ObjectInitialization  
Document 

  INITIALIZING Save in local initialization database. 

RESTful POST of MSDL 
Document 

  N/A Translate to C2SIM and store in 
initialization database 

RESTful POST of Position or 
General Status Report 

  RUNNING   Update unit position from report 

 
RESTful POST of documents is done via the c2simRequest method in the C2SIMClientREST_Lib 
class in the C2SIM Client Library. 
 
Commands are submitted via the c2simCommand method in the same class. 
 
There are also command line utilities for submission of C2SIM/BML documents 
(C2SIM_WSClient2_xxx_ALL.jar) and for commands (C2SIM_Command-xxx_ALL.jar) described 
earlier in this document. 
 
As of v4.8.1.1, the server also supports SystemCommands in SISO draft C2SIM schema 1.0.2. In 
general, these are MagicMove; Simulation and Playback time scaling; Server Recording, and 
Server Playback. The control client for these is included in the C2SIMGUI, available as open 
source from OpenC2SIM.github.io. 
 
  



  

 11 

Accessing Log Files 
 
The server collects information critical for problem analysis in two files, replayLog and 
debugLog.  The replay log contains a record for each message received, each server command 
received, and each message published via STOMP.  A critical piece of data is the message 
number which is assigned as the message is received, appears in most debug log messages and 
appears in the response returned to the client.   
 
The debug log contains miscellaneous messages showing the progress of each message through 
the server and errors detected either via checks in the server code or as the result of an 
exception that might be thrown. 
 
Both log files are collected during the day and then rolled over at midnight (local to the server). 
The names and locations for the two log files are for the current day: 
 
 /home/bmluser/c2simFiles/c2simDebug/debug.log 
 
 /home/bmluser/c2simFiles/c2simReplay/replay.log 
 
Log files from previous days are located with the daily log and are named yyyy-mm-
dd.debug.log and yyyy-mm-dd.replay.log. 
 
The log files can be accessed by accessing port 80 of the C2SIM Server platform using a web 
browser (port 80). 
 

 
 
  
 
   



  

 12 

 
Server deployment, initialization and control 
 
Server initialization and operation is controlled with a (java) properties file, which is described 
in Appendix B to this document.  This file contains a number settings that may be used to select 
a number of options.  The file named c2simServer.properties is located at: 
 

/home/bmluser/NetBeansProjects/Server/C2SIMServer/src/main/resources.   
 
During the build process the properties file is added to the web archive file, C2SIMServer.war, 
used to deploy the server application to Tomcat. To deploy a war file it is copied to 
/opt/tomcat/apache-tomcat-8.0.30/webapps. When Tomcat starts and detects a new war file it 
unpacks in the webapps folder. After Tomcat initialization the webapps folder will contain a 
folder named, C2SIMServer##a.b.c.d and the original war file C2SIMServer##a.b.c.d.war. The 
a.b.c.d is the release number of the server application.  After unpacking the properties file will 
be located at  
 

/opt/tomcat/apache-tomcat-8.0.30/webapps/C2SIMServer##a.b.c.d/WEB-INF/classes 
 
To change one or more properties in the properties, file modify it with a text editor and restart 
tomcat by executing stop-all and then start-all.  These script files are in the bmluser home 
directory. 
 
The current properties file is displayed in Appendix B below.  Note that the file contains 
initialization information for starting the server, location of various files on the server, the 
password required for command submission, switches that control what BML/C2SIM dialects 
are to be translated and other miscellaneous values.  
 
Note that there is a property referencing a “Cyber Attack”.  This is a capability that simulates an 
attack on incoming messages and is controlled by a separate configuration file. A separate 
document will be published describing this capability. 
 
# Implement simulated cyber attack 
server.cyberAttack = T 
 
 
Capturing Response Time Statistics 
 
The server.collectResponsTime property indicates that server response time statistics are to be 
captures.  The C2SIM REST client measures the response time of each transaction as it is 
submitted to the server. If the response from the server, e.g.  
 
<?xml version="1.0" encoding="UTF-8"?> 
<result> 
 <status>OK</status> 



  

 13 

 <message>Message processed successfully</message> 
 <serverInitialized>true</serverInitialized> 
 <serverVersion>4.6.3.6</serverVersion> 
 <sessionState>INITIALIZING</sessionState> 
 <unitDatabaseName>default</unitDatabaseName> 
 <unitDatabaseSize>2</unitDatabaseSize> 
 <msgNumber>2</msgNumber> 
 <time> 0.033</time> 
 <collectResponseTime>T</collectResponseTime> 
</result> 
 
Contains <collectResponseTime>T</collectResponseTime> the client code will submit an 
additional message to the C2SIMServer/Stats URL containing the measured response time from 
the previous transaction.  An example is shown here: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<C2SIM_Statistics xmlns="http://www.sisostds.org/schemas/c2sim/1.0"> 
    <REST_ResponseTime> 
        <submitterID>dsc</submitterID> 
        <msgNumber>3</msgNumber> 
        <startTime>2019-01-29 18:11:51,212</startTime> 
        <endTime>2019-01-29 18:11:55,968</endTime> 
        <elapsedTime>4.756</elapsedTime> 
        <serverTime> 0.010</serverTime> 
    </REST_ResponseTime> 
</C2SIM_Statistics> 

 
The server writes each response time message preceeded with the word “Stats” to the debug 
log located at /home/bmluser/c2simFiles/c2simDebug.  These messages can be extracted from 
the debug log for a particular date and analyzed. 
 



  

 14 

Appendix A: Sample Code Using Java ClientLib 
 
Sending a message 
 
import edu.gmu.c4i.c2simclientlib2.*; 
 
String xmlMsg = “xxxxx”; 
String response = “”; 
C2SIMClientREST_lib c2s; 
 
// Create new C2SIMClientREST_Lib object 
c2s = new C2SIMClientREST_Lib(); 
 
// Set parameters 
c2s.setHost(“localhost”); 
c2s.setSubmitter(“myID”); 
 
// Send the message 
try {                 
     response = c2s.c2simRequest(xmlMsg); 
    }  
catch (C2SIMClientException e)          

{System.out.println("C2SIMException: " + e.getMessage() + " Cause:" 
    + e.getCauseMessage()); 
 return; 
} 
 
// Print the result 
System.out.println(response);  
 
 
  



  

 15 

Receiving a message 
 
import edu.gmu.c4i.c2simclientlib2.*; 
 
// Create the Client Object 
C2SIMClientSTOMP_Lib c = new C2SIMClientSTOMP_Lib(); 
 
// Set parameters 
c.setHost(“localhost”); 
c.setDestination(“/topic/C2SIM”); 
 
C2SIMSTOMPMessage resp; 
 
try { 
   resp = c.connect(); 
} 
catch (C2SIMClientException e) 
{ 
   // Error during connect print message and return 
   System.out.println("Error during connection to STOMP host”  
       + c.getHost() + " " + e.getMessage() + " - " +  e.getCauseMessage()); 
   return; 
} 
System.out.println(resp.getMessageType(); 
 
// Start listening and loop forever 
while (true) { 
   try { 
      resp = c.getNext_Block(); 
   } 
   catch (C2SIMClientException e)  
   { 
      System.out.println("Exception while reading STOMP message " 
         + e.getMessage() + " - " + e.getCauseMessage()); 
      return; 
   } 
   // Print received message 
   System.out.println(resp.getMessageBody()); 
} 
 
 
  



  

 16 

Sending a C2SIM Message requesting a response 
 
import edu.gmu.c4i.c2simclientlib2.*; 
 
C2SIMClientREST_Lib c2s; 
String xml = “xml xml xml xml”; 
String convID = “”; 
 
// Instantiate C2SIMClientREST object for C2SIM message 
c2s = new C2SIMClientREST_Lib("C2_Host","SIM_Host", "Request"); 
 
// Remember the conversationID for the C2SIM message we are sending 
convID = c2s.getC2SIMHeader().getConversationID(); 
 
// Set parameters 
c2s.setHost("localhost"); 
c2s.setSubmitter("C2Tester"); 
c2s.setPath("C2SIMServer/c2sim" 
 
// Send the message 
try { 
   response = c2s.c2simRequest(xml); 
} 
catch (C2SIMClientException e) { 
   System.out.println("C2SIMException: " + e.getMessage() + " Cause:" 
       + e.getCauseMessage()); 
} 
 
// Received Web Services response.  Print it 
System.out.println("Response to WS request: " + response); 
 
// Open up STOMP connection to receive response from C2SIM_SIM 
C2SIMClientSTOMP_Lib c = new C2SIMClientSTOMP_Lib(); 
 
// Set parameters 
c.setHost("localhost"); 
c.setDestination("/topic/C2SIM"); 
 
// Add subscription to listen for same conversationID we just used to send 

c.addAdvSubscription("conversationid = '" + convID + "'"); 
 
try { 
   C2SIMStompMessage sm = c.connect(); 
   // Print response to connect 
   System.out.println(sm.getMessageType().toString()); 
             
   // Get next message - Should be a response to the order sent via WS 
   sm = c.getNext_Block(); 
 
   if (!sm.getC2SIMHeader().getPerformative().equals(“Accept”)) 
 System.out.println(“C2SIM Message not accepted”);  
} 
catch (C2SIMClientException e) { 
   System.out.println("Exception while communicating with STOMP server" + e); 
} 
Continue . . . . 	  



  

 17 

Responding to a C2SIM message 
 
import edu.gmu.c4i.c2simclientlib2.C2SIMClientException; 
String conversationID = “”; 
String order = “”; 
C2SIMHeader c2s; 
 
// Create the STOMP Client Object 
C2SIMClientSTOMP_Lib c = new C2SIMClientSTOMP_Lib(); 
 
// Set host 
c.setHost("localhost"); 
 
// Set the topic 
c.setDestination("/topic/C2SIM"); 
 
// Subscribe to get C2SIM messages 
c.addAdvSubscription("protocol = 'C2SIM'");  
 
// Connect to the STOMP server 
try { 
   System.out.println("Connecing to STOMP host"); 
   resp = c.connect(); 
} 
catch (C2SIMClientException e) { 
   System.out.println("Error during connection to STOMP server " +  
       e.getMessage() + " - " + e.getCauseMessage()); 
   return; 
} 
// Start listening for an order 
try { 
   System.out.println("Waiting for order"); 
   resp = c.getNext_Block(); 
} 
catch (C2SIMClientException e) { 
   System.out.println("Exception while reading STOMP message "  
      + e.getMessage() + " - " + e.getCauseMessage()); 
   return; 
} 
 
// Did we get a request? 
if (resp.getC2SIMHeader().getPerformative().equals("Request")) { 
 
 
// Get the xml order without the C2SIM Header 
String order = resp.getMessageBody(); 
 
// Save the incoming C2SIM Header 
C2s = resp.getC2SIMHeader(); 
 
	  



  

 18 

// Send an Accept response 
try { 
   c.sendC2SIM_Response(resp, "Accept", "ACK"); 
 
   // Close STOMP circuit 
   c.disconnect(); 
} 
catch (C2SIMClientException e) { 
   System.out.println("Exception while sending response to C2SI message" 
   + e); 
} 
 
 
Note – These samples were taken from a pair of reference applications C2SIM_C2 and 
C2SIM_SIM.  The source code for these applications is available as separate files. 
 
  



  

 19 

Appendix B: C2SIMServer.properties file 
 
# STOMP Interface setup (Apache Apollo Server) 
stomp.serverHost=localhost 
stomp.port=61613 
stomp.topicName=/topic/C2SIM 
stomp.topicName2=/topic/BML 
stomp.publishToBoth = T 
 
#Location of bmlFiles ($BML_HOME) 
server.bmlFiles = /home/bmluser/c2simFiles 
 
# Location of C2SIM initialization file (ObjectInitialization) 
relative to $BML_HOME (Name is supplied with LOAD command 
server.initDB = /InitializationFiles/ 
 
# Name of Schema Database 
server.schema_db_name=C2SIMSchemaDB 
 
# Password used for submission of commands controlling 
initialization and server state 
server.c2sim_password = v0lgenau 
 
# Just publish the document without any other processing 
server.justDocumentMode = F 
 
# Just parse the document and publish it - This will catch 
structural xml errors 
server.justParseDocument = F 
 
# Just determine what kind of message, e.g. IBMLReport and 
publish it  This will be included in the STOMP header when the 
message is published  
server.justIdentifyMessage = F 
 
# Controls translation - This is translation to.  If 
serverTranslateIBML09_Order then none of the other 
#   orderss will translated to IBML09 
 
server.TranslateToIBML09 = T 
server.TranslateToCBML = T 
 
# Translate V9 to 1.0 or V1.0 to V9 
server.Translate9To1 = T 
 
# Is C2SIM to be translatd to MSDL? 
server.TranslateMSDL = T 



  

 20 

 
# Capture Unit position from position reports  
server.CaptureUnitPosition = T 
 
# Implement simulated cyber attack 
server.cyberAttack = F 
 
# Request response time statistics from REST client 
server.collectResponseTime = T 
 
# Minimum client version to be accepted by this server version 
 
server.enforceVersion = T 
server.minimumClientVersion = 4.7.0.0  


